Decagon practice problems: interior angle sum quiz
Quick quiz on decagon angle sum to test your geometry skills. Instant results.
This quiz helps you practice finding the interior angle sum of a decagon and apply the formula on quick, clear problems. Get instant results and build speed with focused questions. When you want more, review angle pairs in our angle relationships quiz, or broaden skills with an angles quiz.
Study Outcomes
- Calculate the Interior Angle Sum of a Decagon -
Participants will use the formula (n − 2) × 180° to find the interior angle sum of a decagon, mastering the steps required for decagon angle calculations.
- Apply the Interior Angle Sum Formula to Polygons -
Readers will extend the interior angle sum of a polygon formula to pentagons, hexagons, and beyond, gaining confidence in general polygon angle sums.
- Analyze Relationships Between Angles and Sides -
Users will interpret how the number of sides affects each interior angle and total sum, enhancing their geometric reasoning skills.
- Solve an Interactive Polygon Quiz -
By taking the quiz, learners will actively test their knowledge of what the angle sum of a decagon is under engaging, timed conditions.
- Verify Calculation Accuracy -
Participants will develop techniques to check and confirm their interior angle sum calculations, reducing errors in geometry problems.
- Compare Angle Sums of Different Polygons -
Readers will contrast interior angle sums across various polygons, observing patterns and reinforcing their understanding of polygon geometry.
Cheat Sheet
- General Polygon Angle Sum Formula -
Every simple polygon's interior angle sum follows the formula (n − 2)×180°, where n is the number of sides. This interior angle sum of a polygon rule holds for both convex and concave shapes. University mathematics departments around the world reference this as the foundational angle-sum theorem.
- Decagon Interior Angle Sum -
If you've ever asked "what is the angle sum of a decagon," the answer is (10 − 2)×180°=1,440°. This decagon interior angle sum calculation shows why a ten-sided figure always totals 1,440°. Many academic sources, including MIT OpenCourseWare, demonstrate this exact example.
- Regular Decagon Individual Angles -
In a regular decagon, each of the ten interior angles is equal, so each angle measures 1,440°÷10=144°. Knowing this makes angle-finding easy when all sides and angles are congruent. This fact is commonly used in competition problems and geometry textbooks.
- Triangulation Method -
Visualize the interior angle sum of a decagon by dividing it into eight triangles from one vertex, since 10−2=8. Each triangle has 180°, so 8×180°=1,440° neatly explains the decagon interior angle sum. This triangulation trick is taught in many university geometry courses.
- Mnemonic Sequence for Quick Recall -
Memorize the sequence: triangle 180°, quadrilateral 360°, pentagon 540°, …, decagon 1,440° by thinking "add 180° each time." This mnemonic helps you instantly recall what is the angle sum of a decagon without re-deriving the formula. It's a favorite technique in math contests and high-school review guides.